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Using the cell-cluster approximation scheme we have ascertained the relative stabilities 
of a family of plastically-deformed lattices containing interacting rigid disks. These 
lattices, referred to as Niggli lattices, represent a distortion of the regular hexagonal 
lattice in that single rows are systematically translated away from hexagonal packing 
to yield interpenetrating parallelopipedal unit cells. The cell-cluster analysis has been 
taken only through second order due to the complexity of the resulting subfigures. 
However, the results have been parameter&d in terms of general translation variables 
which permits us to display the contents of the correlated configurational regions for 
all members of the infinite set of such row translates or Niggli-type lattices. In this 
regime we are no longer able to determine limiting contents which are exact in the close- 
packed limit; rather, we construct bounds to such exact regions. 

I. INTRODUCTION 

The cell-cluster theory represents a powerful approach to a systematic evaluation 
of the N-particle, classical configurational partition function for hard-sphere 
systems. Furthermore, this technique in the asymptotic limit of V -+ V, , the close- 
packed volume, yields results which are exact through each order and thus provides 
a formalism for a detailed study of the ideal, anharmonic crystal. 

In general, actual physical systems will not correspond to this model system of 
an ideal crystal but will contain s-dimensional lattice defects corresponding, for 
example, to vacancies and divacancies (s = 0), dislocations (s = 1) and grain 
boundaries (s = 2). The bulk properties of the physical system will, of course, 
reflect the presence of such imperfections. As yet, no statistical mechanical model 
has been developed which is capable of considering all of these divergences from 
perfect crystalline behavior inasmuch as the ideal crystal is still incompletely 
characterized due to the nature of the many-body problem for strongly interacting 
systems. Ideally, such a general model would enable us to calculate macroscopic 
properties of imperfect, disordered systems by enabling us to calculate exactly, 
or estimate in some accurate yet convenient form, the configurational partition 
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function and pair distribution function. The cell-cluster approximation scheme is 
capable of assuming a central role in such a program. 

There is a great wealth of solid state phenomena that may be studied within the 
context of a lattice model of interacting hard-particle systems and the cell-cluster 
scheme. The formalism has been applied successfully, for example, to such 
equilibrium problems as the formulation of a high-density expansion of the free 
energy analogous to the low-density virial expansion and to the determination of 
the elastic constants of such high-density crystalline systems. 

Our program is concerned with the characterization of the statistical mechanics 
of fracture and embrittlement phenomena, both being of considerable technological 
and engineering interest. Our viewpoint is that such material-failure phenomena 
are themselves many-body, cooperative events which may be characterized to first 
order by classical statistical mechanics using a lattice model with particles inter- 
acting via purely repulsive potentials. Considered from this point of view, fracture 
and embrittlement have much in common with melting and the ubiquitous problem 
of crystalline stability. In terms of such a lattice model we may consider that there 
are lattice configurations which, at equilibrium, have a relative stability which is 
a function of packing arrangement as well as of the presence and concentration of 
lattice defects. The calculation described herein was undertaken in an attempt to 
understand the contribution made by geometric configuration and a plastic 
deformation thereof to crystalline stability in the absence of an explicit external 
stress field. 

We consider a family of two-dimensional lattices that are close-packed lattices 
(one member being the highest-density hexagonal lattice) which correspond to a 
continuous plastic deformation of one configuration to another. Our interest is in 
the relative stability of these lattices at equilibrium. The approach described here 
is not specific to the lattice configurations and calculations presented but is capable 
of treating a wide variety of crystalline systems. We have employed the same 
analytic-geometric techniques that were previously developed [1] in order to 
ascertain the correlated content of multidimensional regions of configuration 
space accessible to interacting rigid particles on a lattice. 

Il. CELL-CLUSTER EXPANSION OF THE HELMHOLTZ 
FREE ENERGY FOR PLASTICALLY-DEFORMED HEXAGONAL LATTICES 

A. Introduction 

The cell-cluster expansion technique for hard-particle systems has been described 
in detail in earlier work [2, 31. The scheme may be applied to either the configu- 
rational partition function or to the Helmholtz free energy. We work within the 
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context of the latter inasmuch as the successive correction terms contributing to 
the N-particle Helmholtz free energy, A, , are most easily visualized for the free 
energy itself. 

We consider a family of N-particle systems, each member spanning a different 
virtual lattice. For each sphere system/lattice we consider all distinct nearest- 
neighbor pair interactions and denote the set of such interactions by {(n, t)}. Each 
element of this set is referred to as a cell-cluster of n-particles and topological 
configuration t. In considering the pair-wise interaction of n-particles within a 
cluster the remaining (N - n) particles are constrained to their lattice sites but 
delimit the accessible configurations of the particles within the cluster. In order to 
ascertain the contribution of a given cluster (of rigid disks of diameter U, for 
example) to the free energy, it is necessary to evaluate the canonical configurational 
partition function Qn,t which may be expressed as 

where Rij is the distance between centers of an (ij) pair, the integration is over a 
specific convex region B?‘n,t of configuration space of exact content cP’$, and A(x) 
is the unit step function. The contribution to the Helmholtz free energy A, of a 
specific cell cluster (n, t) is then 

where 
A&bT = -ln(Q,,h! Azn), 

A = h(2mnkBT)-112. 

(2) 

The N-particle free energy being composed of weighted contributions from each 
member of the set {(n, t)} may be written as a sum of successive correction terms, 
W n,t 9 each W,,, correcting Qn-,,t for the presence of n-particle interactions: 

&INkJ = f &<n, t> Wn,t . 
n=1 t 

(3) 

The combinatorial factor, g(n, t), arises from the fact that the system of N particles 
may be partitioned into clusters (q t) in Ng(n, t) different ways. The prescription 
for obtaining the successive W,., functions is provided by a recursion relation: 

WI.1 = AdhJ, n = 1, 

n-l Tj 

W,,t = M&J) - 1 c C,t:;Wi,j , n 3 2, 
i-1 j=l 

(4) 
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where C$,jt is the combinatorial factor giving the number of figures of type (i, j) 
contained in (n, t). These combinatorial factors are different for each member of the 
family of lattices which we consider. Ti is the number of different configurations of a 
connected subfigure of i particles. 

B. Niggli Lattice I 

We shall consider in detail three members of a family of the infinite set of 
plastically-deformed hexagonal lattices and discuss the coordinate systems used for 
each in carrying out the Q,,, integrations. For illustrative purposes we refer 
specifically to two classes of these lattices as Niggli Lattices I and II [4]. The third 
member is the familiar undistorted regular-hexagonal lattice which has been 
previously characterized in detail in earlier work [2, 31. Niggli Lattice I is actually 
a member of a class of asymmetric 5-coordinate, 2-dimensional lattices with B2 sites, 
i.e., B rows of B sites per row. A close packing of rigid disks on such a lattice is 
shown in Fig. 1. Also shown are the resulting Voronoi polytopes and dual lattice 

FIG. 1. Niggli Close Packing of Rigid Disks, I. Asymmetric Hexagonal Voronoi Polytopes 
and Dual Lattice of Triangles and Quadrilaterals. 

consisting of triangles and quadrilaterals. The lattice sites may be defined in terms 
of the basis vectors a, and a, of the parallelopipedal unit cells which are depicted 
in Fig. 2. Inasmuch as Niggli I is not a Bravais lattice but rather a 
lattice-with-a-basis a lattice translation about the two distinct sites of the unit cell 
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FIG. 2. Parallelopipedal unit cells of Niggli Lattice I showing interpenetrating simple lattices. 

generates two parallel and interpenetrating simple lattices the lattice sites of which 
are defined by 

RZa = r, + i aiaj (4 = 19% (5) 
j=l 

u = {CQ , CX~} are integers = 0 ,..., B - 1, 

1 a, 1 = a. 

Each simple unit cell q is specified by the primitive translations aj . 
The unit vectors between nearest-neighbor lattice sites may be expressed as 

w1 = -wp = a,/a, 

ws = (a, + ad/24 

w4 = (8, - al)/24 
(6) 

w5 = (&a, - X,a,)/a. 

Niggli I is a specific lattice for which A1 = -3/16 and A, = -l/2. The system of 
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vectors {aj} is not orthonormal and may be transformed into a reciprocal basis 
{b,} which is often more convenient for actual computational purposes. However, 
due to the asymmetry of the Niggli 1 lattice, an oblique, reciprocal basis such as was 
used with the regular hexagonal lattice calculations in previous work [2, 31 is no 
more advantageous than the rectangular Cartesian system which has been employed 
herein. 

Consider now a close packing of rigid disks on Niggli Lattice I. The configu- 
rational partition function for such a system of 2-spheres may be approximated by 
a cell-cluster analysis. The nature of the lattice and pair-wise interactions involved 
is best seen by considering the region of configuration space ,%?I containing particle 1 
defined by 

(7) 

The exact configurational partition function for such a single-particle (singly 
occupied) cell is thus defined by the area of one of the irregular five-sided regions 
bounded by circular arcs as depicted in Fig. 3. These regions represent the 
“free area” to which the center of a particle has access, subject to the hard-particle 
nonoverlap restriction. Asymptotically, in the close-packed limit, V -+ V,, , within 
which we shall be working, the circular arcs are replaced by their tangent hyper- 
planes and the integral Q, is able to be represented by the area of an irregular 

P(% -c, rv+d) 

FIG. 3. Exact irregular pentagonal region a, havmg hypercylindrical boundaries and limiting 
planar pentagonal bound [w, for a singlet cell of Niggli Lattice I. 
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pentagon R, , of content lPi2) as shown in Fig. 3. It is apparent from this figure that 
all such areas are of the same conformation, though their orientations differ. 

Figure 1 also serves to illustrate how Niggli Lattice I is built up from alternating 
rows of hexagonal packing and rows of translated or distorted hexagonal packing. 
For example, if rows 1 and 2 are hexagonally packed with respect to one another, 
then rows 3 and 2 are “distorted” by a translation of rows 3 and 4 away from the 
nominal hexagonal lattice sites such that rows 3 and 4 still remain hexagonally 
packed with respect to each other. The entire lattice is constructed in this manner 
by alternating pairs of hexagonally-packed rows with pairs of rows having 
“distorted” packing. It remains to characterize and parameterize the nature of a 
general distortion such as between rows 3 and 2. With such a general character- 
ization the lattice structures for a family of such packings will have been specified. 

It is our purpose to characterize as general a distortion a possible, so that, within 
the framework of our development, we may easily vary the nature of the distortion 
to determine its effect on the configurational partition function Q1 and the 
“relative stability” of the lattice. Figure 3 illustrates, in a rectangular coordinate 

Q 232 

FIG. 4. Pair cell-cluster Qz,* of Niggli Lattice I. 
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system, the parameters necessary for such a development. The centers of two rigid 
disks on Niggli Lattice I denoted by points I and 2 represent a distortion or trans- 
lation with respect to each other from the regular hexagonal lattice. All particles 
which are distorted relative to one another for this specific lattice structure conform 
to this configuration. Point L refers to the nominal position of a lattice site of the 
regular hexagonal lattice (relative to Point 1) whereas Point P refers to the position 
of a lattice site of Niggli Lattice I obtained by a translation (distortion) of an entire 
row from, for example, sites represented by {L} to those represented by {P>. The 
distortion is parameterized by a displacement of Center 2 by (1) a general 
distance (c) in the negative x direction, and by (2) a general distance (d) in the 
positive y direction. With (c) and (d) as variables, we define an entire family of such 
distorted lattices. All interactions and correlated areas necessary for the determi- 
nation of the Qn,, are described solely in terms of the distances c, d, a (distance 
between lattice sites) and (a - IJ), the “radius” of an irregular pentagonal singlet 
cell as in Fig. 3. 

In the high-density limit, the configuration integral Q,(9:“‘) is approximated by 
the content [14i2) of one of the irregular pentagons Iw, shown in Fig. 3. Ql”(lPi2)) 
then represents the limiting cell-model approximation to Qhi for this lattice/disk 
system. By considering Q, we may correct the independent-particle cell approxi- 
mation for the correlation of disk pairs. Considering a specific two-particle 
correlation such as depicted in Fig. 4, if Particle 1 moves to a position so that the 
x component of its vector position is negative, then Particle 2 may move toward 
Particle 1 in the -x2 direction so that it is beyond the nominal single-particle 
“free area” yet correlated as a nearest neighbor to Particle 1. The multiplicity of 
such correlations for these asymmetric configurations considerably complicates 
a pure analytical treatment. Herein we present only the results and contributions 
of such pair correlations. Using a polytope bound analytic integration routine 
such as the exponential polynomial integration by-parts algorithm developed by 
the Salsburg group at Rice University [5], we may also consider the variety of 
triplet and higher-order interactions that arise for these lattices. We should hope 
to be able to improve the bounds through second order, however, in addition to 
considering such higher order interactions. 

The multiplicity of correlated-pair allowed regions of configurations space is 
shown in Fig. 5. There are four such distinct correlated areas that must be 
distinguished, and these are labelled topologically as Q2,, , Q2,2, Q2,3 and Q2,* in 
Fig. 5. Inasmuch as 

Q2.t = Q,’ + w,,, 

or 

W2.t = Q2.t - Q12, 
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then 

A, sz NA, + i g,,tW,,t , (10) 
t=1 

where g,,, is a combinatorial factor depending directly upon a specific pair configu- 
ration t. 

We have thus characterized a generalized continuous distortion corresponding to 
the class of lattices of type denoted as Niggli Lattice I, the nearest-neighbor unit 
vectors of which are given by Eq. (6). Such a specific lattice gives rise to an approxi- 
mation to AN, Eq. (lo), which considers the multiplicity of pair correlations 
implicit in the Q,,t functions. We have previously presented an analytic-geometric 
approach to this type of calculation [I]. The methods used here closely parallel 

. . . 

. . . 
FIG. 5. Bounds to pair subfigures Q,,* of Niggli Lattice I. 

those presented therein. Since the actual analytic computational procedure is 
quite complicated and tedious, we display the explicit evaluation of Q, and Q2,2 
in Appendix I. These calculations are illustrative of the procedures followed and 
while Q2,2 is the most difficult of the four QBst functions to evaluate, its presentation 
serves to illustrate all of the problems encountered. We merely cite the results for 
Qs.1, Qz,s > and Q2,4 here. 
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In Appendix I, general expressions for Q, and QZs2 appear which depend solely 
on the quantities a, (T, c and d. Specific numerical values for Q1 and QZs2 arise if we 
arbitrarily choose: a = 8, (J = 7, c = 1, d = 0.5. Note that (a - 0) = 1, as in 
previous work with the regular hexagonal lattice [2, 31. The specification of these 
values corresponds to the choice implied in Fig. 3. With the specification of these 
parameters we delimit a specific lattice and define a close packing of disks on such 
a lattice for which 

Q, = 3.16, 
Q2,1 = 10.69, 
Q2,2 = 10.99, 
Q2,3 = 12.18, 
Q2,q = 15.50. 

Recall that for the regular hexagonal lattice, 

Q, = 3.00, 

Q,,, = Qw = Qz.3 = Qu = 9.042. 

The correction factors W,,, , for Niggli Lattice I are obtained from Eq. (9) as 

w,,, = .70, w,,, = 1.00, W,,, = 2.19, w,*, = 5.51. 

The free energy function A, may be written in terms of the W,,, as in Eq. (IO), 
given the combinatorial factors g,,, . Each rigid disk has two pair interactions of 
the type Q2,3 and one each of the types Q,,, , Q2,2, Q2,4 . Inasmuch as there are 
5 pair interactions altogether for N disks, the total number of distinct interactions 
is 5N/2. These are accordingly distributed as g,,, = N/2, g,,, = N/2, g,,, = N, 
g - N/2, thus permitting evaluation of Eq. (10) through second order. It has 2.4 - 
been conjectured, however, that the Helmholtz free energy possesses the following 
asymptotic expansion [3]: 

A,/NkBT - 2 ln(h/a) - 2 In(&l - 1) + C + 0(0-l - I), 

where 0 is a reduced density variable 

e = d/a2 

(11) 

and C is the additive free energy constant 

(12) 

Ynst = evE- Wn,dWl. 
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For lattice packings such as we are considering here such an asymptotic expansion 
must be generalized in order to account for the possibility that a lattice will consist 
of interacting nearest-neighbor pairs which are separated by a distance a(n, t) which 
is not invariant but a function of a specific pair interaction. Consider Fig. 5, for 
example. We have depicted the pair subfigures for a specific member (Niggli I) 
of a general family of lattices for which ~(2, 1) = a(2,2) = ~(2, 3) # a(2,4). Thus, 
the reduced density variable 8 in this case depends on the weighting factor g(n, t). 
For a distorted or plastically-deformed lattice we may write the free energy per 
particle as 

ANigg~j/NkBT - 2 ln(h/u) - 2 1 C g(n, t) ln(P(n, t) - 1) I C’ + *.., (13) 
II t 

where C’ now includes the constant terms which arise from In(t9-l(n, t) - I), where 

e-y?,?, t) = e-1 + 6(n, t) 
e = 02/a2 

and 

(14) 

(15) 

where 

Yn,t = Qn.,(Niggli)/Q~-,(Hex), n = 2. (16) 

Equation (13) represents an expansion of the free energy about that of the 
undistorted hexagonal lattice. Equations (15) and (16) are a natural consequence 
of this expansion procedure. 

Cl is the value of C,,, obtained by considering the single-particle undistorted 
“free area” which is .144. The value of C’ is, of course, different for each member 
of the family of lattices. For Niggli Lattice I we obtain C,’ = -.599 through 
order IZ = 2. A discussion of this result is postponed until we have considered 
Niggli Lattice II in the next section. 

C. Niggli Lattice ZZ 

The results outlined in the previous section represent the characterization of a 
typical intermediate distortion-one member of a class of possible such distortions 
(row translations or plastic deformations). It is interesting to note the results of the 
extremal distortions. One end of the spectrum of distortions obtainable under this 
regime is represented by the undistorted regular hexagonal lattice which has been 
previously considered. We have merely cited the results previously obtained for it. 
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FIG. 6. Niggli Close Packing of Rigid Disks, II. Symmetric Pentagonal Voronoi Polytopes 
and Dual Lattice. 

. 

FIG. 7. Parallelopipedal unit cells of Niggli Lattice II showing interpenetrating simple lattices. 
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Another extremal distortion (maximum distortion in the direction c) is represented 
in Fig. 6. We refer to this lattice as Niggli Lattice II. It is again a lattice-with-a-basis 
for which there are two distinct sites for a parallelopipedal unit cell as shown in 
Fig. 7. Thus, a lattice translation about these sites also generates two parallel and 
interpenetrating simple lattices defined by Eq. (5) in terms of the primitive 
translations a, . The unit vectors between nearest-neighbor sites of Niggli II may be 
expressed by Eq. (6) except that for wg the parameters X, and h, are specifically 

A, = 0 and A, = -l/1/2 + 43. 

The calculations of Q1 and Q,,t for this lattice are considerably more simple than 
the corresponding calculations for Niggli Lattice I. The extreme nature of the 
distortion results in the displacement of a row of particles by exactly one-half of the 
interparticle distance so that distorted particles are directly in line with undistorted 
particles (as reflected by X = 0). This introduces an element of symmetry lacking in 
Niggli I which greatly facilitates the calculations. Furthermore, the number of 
distinct two-particle subfigures is reduced from four for Niggli I to three for 
Niggli II. Appendix II outlines the necessary computations for this lattice configu- 
ration. The results are expressed as 

Q, = 2.50, 

Q,,, = 9.96, 
Q2,2 = 11.72, 

Qm = 5.88, 
c, = .144, 
C,’ = .340. 

These results and the results for Niggli Lattice I differ significantly from the 
results obtained for the undistorted hexagonal lattice. Corresponding to the usual 
interpretation of C, the large negative result for Niggli Lattice I, (C,’ = -.599), 
indicates a dramatic increase in the stability of the lattice in comparison to the 
hexagonal, undistorted lattice (C = .130) [2]. On the other hand, the large positive 
result for Niggli Lattice II, (C,’ = .340) indicates a decrease in the stability of that 
lattice relative to the hexagonal, undistorted lattice. This surprising result, i.e., 
two highly distorted lattices exhibiting very different apparent stabilities is a 
consequence of the rigid-disk model itself. 

A rigid-particle/lattice model assumes only short-range repulsive forces between 
particles. As such, this model is expected to be valid in the close-packed limit where 
the repulsive interparticle forces predominate. If a particle separation away from 
closest packing is introduced, there will be a decrease in the importance of the 
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repulsive forces between particles whereupon the model is expected to manifest 
a greater stability such as is observed in Niggli Lattice 1. Niggli Lattice II was 
constructed such that the pair function Q2,2 of Fig. 9 assumes a minimal inter- 
particle separation. This destabilizes Niggli Lattice II, (C,’ = .340), by emphasizing 
the short-range repulsive interparticle forces. 

Thus, the C’ notation is sufficient to low order (n = 2) to characterize the 
stability of a lattice due to short-range repulsive interactions. 

A more comprehensive theory should be able to take into account destabilization 
due to interstitial voids, grain boundaries, and other defects. Theoretically, these 
phenomena may be investigated within the cell-cluster scheme by calculating the 
higher-order contributions (n = 3,4,...) which comprise C’. For the distorted 
lattices considered herein such calculations are difficult and we seek an alternative 
method which may be applied to low order. 

The stability of a lattice is inherently related to lattice distortion through two 
effects: (1) compression of the particles yielding a destabilization through inter- 
particle repulsion at short-range and, (2) the production of interstitial voids. 
While C’ is a good measure of the first, it is not a good measure of the second to 
low order. Interstitial void destabilization is undoubtedly related to the number 
density of a lattice, for the greater the amount of void space the less the density of 
the lattice. However, it is apparent that both Niggli I and Niggli II have number 
densities less than that of the hexagonal lattice, and yet the results for these two 
lattices differ markedly. 

We can relate, however, the interstitial void space to the Q,,t functions-the 
greater the amount of void space in a lattice the greater the area over which the 
center of a particle may wander for configurational interaction. Thus, a large 
amount of void space necessarily must produce a large value of QzSt . Such large 
values of Q,,t produce large negative contributions to C’ and, consequently, tend 
to decrease the free energy of the lattice (cf., Eq. (14)). Lattice compression will 
give smaller pair-configurational functions QZ,t and thus large positive contri- 
butions to C’. 

We suggest that the additive free-energy constant of the undistorted hexagonal 
lattice (C = .130) represents, in some sense, a standard of stability. Those lattices 
which have a value significantly greater than this value (such as Niggli Lattice II) 
manifest considerable destabilization due to lattice compression. Those lattices 
which produce a value significantly less than this value (such as Niggli Lattice I) 
manifest destabilization due to interstitial void space. Thus we suggest it is the 
magnitude of C’ which denotes destabilization and the sign of C’ designates whether 
this destabilization is due to lattice compression or interstitial void space. Further, 
it is possible to imagine a lattice which would contain destabilizing contributions 
due to both compressive and void effects so that the free energy would be of the 
magnitude of that for the hexagonal undistorted lattice, whereas, in reality, the 
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lattice would be quite unstable. In such a case the contributions from the Q,,t would 
be both large positive and large negative while their total contribution to C’ would 
largely cancel each other. It is tempting to consider a sum of the positive Q,,t to 
represent destabilization due to compression and of the negative Q,,t to represent 
destabilization due to interstitial void space. Carried to its logical extreme, this 
formulation would be lead to a phenomenology of lattice distortion, each distortion 
being a function of both characteristic compressive and void instabilities character- 
ized by the Qz,* and their contributions to C’. Thus we may write Eq. (15) in the 
form 

where 

C’ = c, - c, - c, , 

and the t, are those configurations for which (In Yi,J > 0, and the t, are those 
configurations for which (In Yh,,) < 0. 

Then C,(Hex) - C, is a measure of destabilization due to lattice compression 
and C,(Hex) - C, is a measure of destabilization due to interstitial void space. 

For Niggli Lattice I, we obtain 

Cl = .144, 
c, = j-.743, 
c, = 0.0, 
C,’ = -.599, 

and for Niggli Lattice II, we obtain 

c, = .144, 
C, = .235, 
cc = -.431, 

C,’ = .340. 

The magnitude and sign of these contributions is consistent with the above 
interpretation. 
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APPENDIX I: GENERAL RELATIONS FOR THE CONFIGURATIONAL PARTITION 
FUNCTIONS OF NIGGLI LATTICE I 

Here we display general expressions in terms of the parameters a, u, c, and d for 
the evaluation of Q, and Q2,2 for Niggli Lattice I. The relations are meant to be 
illustrative of the methods used to calculate Q, and the QZpt for various members of 
this class of plastically-deformed lattices. 

Consider first the determination of Q1(pl) shown in Fig. 3. We may ascertain the 
content Pi’) of the asymmetric region R, as follows. The area below the x axis is 
one-half the area of a regular hexagon of sides 2(a - u)/1/3. This area is just 
~‘3 (a - cr)“. The area above the x axis is obtained upon ascertaining the equation 
of the line AB in a rectangular coordinate system. Given a functionf(x) = line AB, 
the area of interest is the area between the x axis and the line AB and between 
+(a - cr) and -(a - u). Thus, 

E=i”’ = d/3 (a - u)” + f=)-(x) dx. 

The position of a translated hexagonal lattice site P is parameterized by the 
variables c and d as shown in Fig. 3. The final parameterized expression for [wi’) 
attains the form, 

= d3 t” - O)” + 2(a - u)[-xABmAB + yAB], 

where mAB is the Slope of line AB and (xAB , Y,& re p resents the intersection of 
lines AB and OP of Fig. 3. Geometrically these may be determined solely in terms 
of the variables a, u, c and d. Then 5$“’ is entirely a function of a, u, c and d and so 
represents a general solution for the limiting polytope bound to Q,(9’:“‘) in terms 
of the variables which define the lattice distortion. The result above, derived in a 
rectangular coordinate system, may be expressed in terms of the oblique coordinate 
system used in earlier work [l, 21. The Jacobian for the transformation is ~‘3/2, 
thus, Q, E pi’) = 3/2(~ - u)” -/- d/3 (u - (T)[-xA$nAB -k JJAB]. 

The calculation of Q2,2, one of the four correlated two-particle configurational 
partition functions, is considerably more complex. Figure 4 depicts this configu- 
ration. It is instructive to consider this specific calculation since it illustrates most 
of the problems encountered with this type of integration scheme. 
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We consider the sum of the following regions which comprise ([w,,,P$): 

(I) Region 1 correlated with Regions 4 and 5, 

(II) Region 1 with Region 6, 

(III) Region 2 with Region 5, 

(IV) Region 2 with Region 6, 

(V) Region 3 with Region 6. 

FIG. 8. Bound (e) for free area of Niggli Lattice I. 

The sum of these five contributions with respect to the bounds denoted in Fig. 4 
is QzS2 .rThe configuration integrals for these regions are 
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S = (2/ d-j)@2 - 0) 4- m,x, - Y, , 

T = (l/t/5) - nt, , 

u = xd2j2 + 2@ - U) xd + (3/2)(0 - u)~, 

Y = (-~~~~/2)(1/112~ + l/y'3) + TX, + (a - 0)"/2U + T(a - CT), 

,,~~[-~-~(u-u)+~(u-u)"~~~, 

II, = [+x12 + sx, !J2, 
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where m, = -l/mop and (x, , y,),... are the coordinates at the points A,..., which 
are geometrically determined as functions of a, u, c and d. Note again that, in terms 
of a, u, c and d, the result is quite general and that by varying c and d we may 
consider Q2,2 and the other Qn,, for a spectrum of distortions. It is quite difficult 
to consider such general higher-order correction terms, however. For example, 
Q 3,t is much too complex to consider even for a polytope bound integration by 
computer inasmuch as the bounds themselves must be predetermined by the 
above analytic-geometric scheme for general distortions. The consequence of 
choosing specific values for a, (T, c and d, and so determining a numerical result 
for Q,,, and the other Q2,t’~, is presented in the main text. 

APPENDIX II: NIGGLI LATTICE II 

Herein we explicitly characterize Niggli Lattice II which represents one extreme 
of the type of distortion (row translation) that is possible, i.e., maximal dis- 
placement allowable in the c direction. The approach is analogous to that employed 
for Niggli Lattice I as presented in Appendix I. The problem is greatly simplified, 
however, because of the increased symmetry inherent in this lattice. For example, 
in contrast to Niggli Lattice I there are only 3 distinct Q,,t subfigures to be 
considered. Moreover, the bounds of the single-particle “free areas” are greatly 
simplified, since by choosing a rectangular coordinate system where the axes 

FIG. 9. Pair cell-clusters Q,,, of Niggli Lattice II. 
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include the disk centers the bases of the pentagonal “free areas” have zero slope. 
Also, dependence upon the variable (c) is eliminated, since the extremal nature of 
the distortion dictates that c = a/2, where u is the distance between disk centers. 
Further, by choosing a minimum value for (d), the distance from the center of a disk 
to the base of the pentagonal “free area” is d = (a - o), thus eliminating explicit 
dependence on (d) also. 

Q&P’~“‘) is especially easy to evaluate and the result is completely analogous to 
that for Niggli Lattice I: 

Q, sz [Fpp) = 3/2(a - CT)” + ; (a - u)” = ; (a - u)2. 

Following the procedure of Appendix I we wish to display how a specific 
2-particle configurational partition function obtains for Niggli Lattice II. Consider 
the configuration depicted in Fig. 9, denoted R2,1,11(P~~&) for which there are five 
constituent interactions given by the following five integrals: 

The bounds A and B are given by 

A = yl = --(~/G)x~ - (2/d/3)@ - u), 

B = y1 = (l/d/3) Xl - (2/x0)@ - u), 

A’ and B’ are obtained from A and B by replacing x1 with x2 and y, with y, . The 
specific evaluation of these integrals follows the procedure outlined in Appendix I. 
Numerical results obtained for specific values of a and cr are given in the main text. 
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APPENDIX III: BOUNDS TO LIMITING SUBFIGURES FOR 
NIGGLI CLOSE PACKINGS 

Herein we wish to present a general prescription for constructing bounds to the 
limiting (high-density) subfigures for plastically-deformed Niggli close packings. 
While it is a straightforward procedure to construct the limiting subfigures for the 
regular hexagonal lattice, several ambiguities arise in the consideration of Niggli- 
type lattices such as we have considered here. 

Ben-Naim and Stillinger [6] have definitively characterized the concept of a 
nearest neighbor for the construction of general Voronoi polyhedra. In order to 
illustrate the application of their criteria to Niggli-type lattices, consider Fig. 1. 
Voronoi polyhedra are constructed in the standard manner giving rise for Niggli 
Lattice I to the asymmetric hexagonal polytope and dual lattice network depicted 
in Fig. 1. The dual lattice consists of triangles and quadrilaterals. Moreover, each 
disk has 6 neighbors which fulfill the nearest neighbor criteria of Ref. [6]; i.e., 
adjacent Voronoi regions all have a common edge intersected by their line between 
centers. However, if we construct the exact cell-model, single-particle subfigure for 
Niggli Lattice I, we obtain a free area bounded by five arcs as shown in Fig. 10. 

6 5 

FIG. 10. Bound Rr) (Pj’)) to exact free area of Niggli Lattice I. 

We cannot construct the high density, limiting subfigure corresponding to this 
exact region in a manner analogous to the regular hexagonal lattice, but a bound 
to this region may be so constructed. We thus observe that the content of the 
region TIR, , IlPi’), is a bound to the content of the limiting polytope, IFoi2’, which is 
exact in the high-density limit; i.e., lim,,O pi”’ = 9’:“’ whereas limv,vO IlPi2’= Pi”’ 

581/7/3-9 
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(in the text we refer to the bounds by [FD only). In our construction Disk 6 is not 
considered to be a nearest-neighbor of Disk 7 inasmuch as the bound L contributed 
by the 6th disk is outside the free area defined by the other five interactions depicted 
in Fig. 10. 

A two-particle subfigure is a representation of the additional free area accessible 
to a particle if a nearest-neighbor particle (with which it is correlated) is not 
restricted to remain at its nominal lattice site. For example, in Fig. 10, Disk 7 has 
access to the area depicted by the dashed lines if Disk 5 moves away from its lattice 
site to its extreme limit away from Disk 5, along the line Z,,, drawn between lattice 
sites. With the extreme point along Z,,, as center, a circle of radius u intersects Ib,, at 
point C. A line drawn through C perpendicular to I,,, defines the bound. Note 
that in some cases this bound will intersect line L. In such an event line L will 
become a bound of the two-particle subfigure even though it was not a bound of 
the one-particle free area. 

APPENDIX IV: EXACT SINGLE-PARTICLE FREE AREM FOR NIGCLI LATTICES 

It is possible, by methods previously developed [l], to calculate the exact single- 
particle free areas for the Niggli Lattices. In practice, such calculations are tedious 
and are, in general, not carried out inasmuch as they are not able to be extended 
to higher order, i.e., beyond the approximation inherent in the cell model. We 
present them here for the sake of completeness. 

FIG. 11. Exact free area 9{:\ (9$) for Niggli Lattice 1. 



Niggli Lattice I 

QI,I(~~:~~ = $Q1(9’F’), hexagonal + $[au sin p1 + aL sin p2 = 

where 

Q&Y~‘), hexagonal = 
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+ uL sin p3 + au sin p4 - aYP1 + p2 + p3 + P4)1, 

q u2{(31/3/2) 7, - 3[7,(1 - ~~/4)]l/~ - 2~r + 6 COS-~(T~/~)}, 

70 = a2/u2, 

L = [(a/2 - c)” + (1/T a/2 + d)2]1/2, 

p1 = co+(u2 + a2 - DQ2au), 

p2 = cos1(u2 + L2 - Df,J2au), 

p3 = COS-~(U~ + L2 - D&/2au), 

p4 = cos1(a2 + u2 - D&/2au). 

Refer to Fig. 11 for an illustration of these parameters. 

Niggli Lattice II 

where 
Q,,II(.9’~~$ = $Q1(Pj2’), hexagonal + 2(ua sin pa -- u2p,!. 

p5 = cos-l(a2 + u2 - D2/2au) 

and D is defined in Fig. 12. 

FIG. 12. Parameters defining exact free area 3’& (9$r) of Niggli Lattice II. 
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